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The steady supersonic flow of a vibrationally relaxing gas past a cone is studied using 
numerical methods. Near the tip of the cone the flow is obtained by means of a co- 
ordinate expansion and built. on to this is a characteristic network used to obtain the 
remainder of the flow. Of particular interest is the development of the frozen shock 
at the tip into a relaxation-dominated wave at  distances large compared with the 
width of the wave. The numerical results are presented in a concise similarity form 
which will permit accurate extrapolation to very weak waves in atmospheric air. 

1. Introduction 
Steady supersonic flows past pointed bodies of revolution have been extensively 

treated in the literature and for ideal gases difficulties associated with the singularity 
a t  the tip have long since been resolved. The flow past a cone at  zero incidence was 
essentially solved by Taylor & Maccoll (1933) with numerical solutions by Kopal 
(1947). 

Whereas the supersonic flow of an ideal gas past a symmetric wedge is separated by 
plane oblique shocks into regions of uniform flow, the equivalent axisymmetric flow 
past a cone consists of a locally plane shock followed by an isentropic compression 
which further deflects the streamlines parallel to the cone surface far downstream. 
According to the usual inviscid compressible flow assumptions both compressions 
take place at  the tip for a cone surface streamline. 

In  the case of a vibrationally relaxing gas the initial change in properties on a cone 
surface streamline must be the same as for the ideal gas with specific heats equal to the 
frozen specific heats of the relaxing gas but thereafter the gas relaxes as it passes 
along the cone surface. The gas relaxes with vibrational energy increasing at  the 
expense of ordered kinetic, rotational and translational energy. The rotational and 
translational energy modes are assumed to be in mutual equilibrium throughout the 
flow. One of the principal features of the flow is the attenuation of the frozen bow shock 
as its distance from the cone axis increases. Behind the decaying frozen shock a 
relaxation region develops, taking over an increasing fraction of the compression 
wave. As the distance tends towards infinity the structure of the wave approaches 
that of a plane oblique shock wave and behind it the flow is essentially in equilibrium. 
Unlike the wedge flows discussed by Hornby & Johannesen (1975), the flow downstream 
of the wave is non-uniform owing to axisymmetric effects even at large distances. 

t Present address : Koninklijke/Shell Exploratie en Produktie Laboratorium, Volmorltan 6, 
Rijswijk (Z.H.), Holland. 
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However, the wave a t  infinity contains all the properties discussed by them. As a 
one-dimensional wave it was described by Lighthill (1956) and it may be fully or 
partly dispersed. In  this paper we are concerned with flows which lead to waves of 
both types. 

The flow at infinity can be found by integrating the ideal-gas cone flow equations 
using the equilibrium properties of the gas. This gives only the strength and inclination 
of the wave but its detailed structure can then be determined by one-dimensional 
considerations as a separate exercise. Thus the flow changes from a frozen ideal-gas 
flow at the tip to an equilibrium ideal-gas flow a t  infinity, where the wave is of finite 
extent. To determine the flow we must find how this change takes place. Of particular 
interest is the development of the wave towards its ultimate ' one-dimensional ' form and 
of the entropy layer caused by different streamlines having different early histories. 
As in the flow of an ideal gas, the streamlines approach the surface asymptotically. 
The entropy layer shrinks towards the body and might be expected to cause computa- 
tional difficulties a t  large distances along the cone. Though we shall discuss flows 
past cones with semi-apex angles less than 15" the methods are directly applicable to 
cones having attached shocks and supersonic flow downstream. 

A number of papers have presented approximate treatments of these flows but it 
is usually difficult to obtain precise numerical results which accurately account for 
the essentially nonlinear effects involved. Khodyko (1964) solved the linearized flow 
equations for the supersonic flow of a relaxing gas past a slender cone. Chou & Chu 
(197 I )  solved the nonlinear equations by a systematic perturbation method using 
characteristic parameters. In  neither case was information given concerning the flow 
a t  large distances from the body. Very recently Clarke & Sinai (1977) used matched 
asymptotic expansions allowing certain regions of the flow to be calculated even in 
the far field. Their method consists of an extension of that of Blythe (1969) to 
axisymmetric flow and is for slender cones. 

To obtain solutions which accurately describe the development of the wave towards 
its ultimate one-dimensional form a t  infinity, numerical methods must in general be 
used. We chose the method of characteristics, which has been extensively used to 
solve the hyperbolic equations of supersonic flow. The accuracy of this approach in 
non-equilibrium flows was demonstrated by Hornby & Johannesen (1975) and by 
Dain & Hodgson (1975). However, this method cannot be applied near the singularity 
a t  the tip of the cone and a suitable starting procedure must be developed. Sedney & 
Gerber (1963) initiated their calculations by assuming that the flow was frozen in a 
finite region surrounding the tip. This led to errors throughout the flow, but particu- 
larly just downstream of the frozen region. Later Sedney & Gerber (1967) calculated 
the first derivatives of the flow variables a t  the tip and these could have been used to 
determine more accurate starting conditions for the method of characteristics. The 
gradients were determined in a normalized stream-function co-ordinate system intro- 
duced by Chester (1956) and require transformation back to the physical plane. 

Having available a large computer we found it simpler to use a direct approach to 
determine the flow in the neighbourhood of the tip. The thermodynamic variables 
were expressed as polar co-ordinate expansions about the tip and these were matched 
onto the curved frozen shock boundary. This approach was mentioned briefly by 
Sedney & Gerber (1967). Successive orders of the expansion were integrated numeri- 
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cally. Details of the tip expansion method are given in 9 3, which may be bypassed to 
obtain the far-field results. 

The flows investigated are particularly interesting since they shed some light on 
the behaviour of fully dispersed and weak partly dispersed waves subjected to axi- 
symmetric propagation effects. It has been shown by Hodgson & Johannesen (1971) 
that such waves are present in the atmosphere as sonic bangs. 

2. General requirements for the calculation procedure 
The flow was considered in two distinct parts within which different methods were 

used to obtain numerical solutions. In  the neighbourhood of the tip a co-ordinate 
expansion was used to solve the equations expressed in polar co-ordinates. At a finite 
distance from the tip the method of characteristics was used to continue calculation 
of the remainder of the flow. Both parts of the calculation were carried out in 
the physical plane. Non-dimensionalization of variables was based on free-stream 
conditions, denoted by a suffix co. A prime indicates a dimensional quantity and 
all unprimed variables are non-dimensional : 

and (z’, r’, R‘, . . .) = (a’TL)*/(pL Q,;) (2, r,  R, . . .). 

Here p ,  p and T are the pressure, density and translational temperature, q is the 
magnitude of the velocity vector, whose components are u and v, and a is the frozen 
speed of sound. a is the vibrational energy, s is the entropy, cp is the frozen specific 
heat at  constant pressure, cVib is the vibrational specific heat and W’ is the gas constant. 
The relaxation frequency Q, is defined by the simple relaxation equation 

DalDt = p Q ( 3  - a),  (9) 

where the bar denotes the local equilibrium value of a, which is a function of T .  Q, 

is also a function of T and the actual relationship depends on the particular gas. In 
the flows investigated the temperature changes are not very large. The general 
features of each flow will not be affected by putting 

0 = 1, di7/dT = C v i b  = constant. (lo),  (11) 

The errors introduced by these simplifications will not exceed a few per cent. It is 
straightforward to include in the calculation the precise functional relationships 
@ ( T )  and a ( T )  for a particular gas with a consequent loss of generality. Taking the 
zero of both CT and i7 to be their free-stream value allows us to write 

Entropy is also measured from its free-stream value. 
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FIGURE 1. Co-ordinate systems and notation. 

The frozen specific heats have also been assumed constant and a11 calculations 
presented here are for a gas with principal specific-heat ratio y = Q ) which includes 
all diatomic and linear polyatomic gases. The equations of energy and state are used 
in both parts of the calculation and are valid throughout the flow: 

CpT+r++q2 = c,+t?/Mma, (13) 

(p = pT, (14) 

where M, is the Mach number based on the frozen speed of sound in the free stream. 
In general the frozen speed of sound is 

a = (yT)1. (15) 

Viscosity and heat conduction have been neglected throughout. The restriction is no 
more severe than in ordinary ideal-gas compressible flow theory. 

What follows is a detailed discussion of the methods used to determine a typical 
flow and the results are illustrated for the flow at M, = 2 of a gas having cp  = Q and 
c,!,, = 1 past a cone with a semi-apex angle of 10". 

3. The flow near the tip 
The meridian plane of the spherical polar co-ordinate system with origin a t  the tip 

of the cone is shown in figure 1. The flow is axisymmetric, so that properties depend 
only on R and 4. The momentum equations in the R and 4 directions are 

and 
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The continuity equation is 

au av ~ u a p  ~ a p  
R-+++--+--+~u+vco~$ = O 

aR a$ p FR pa$ 

and the relaxation equation (9) becomes 

where 

523 

is the local departure from equilibrium. These five equations together with ( 1  2)-( 15) 
make up the required set. On eliminating p ,  F and T using (12), (14) and (15 )  we find 

av 
ad (v2 - a2) - + uv2 - d(2u  + v cot $1 

and 
a2 = ( y -  I )  (c, + iyM2, -a- iu2- 22 , )  1 2 

I' = cVi,(a2/y - 1 )  - a. 

These are six equations for u, v, p, a, a and I?. 
At the surface of the cone v(R,  8,) = 0, where 8, is the semi-apex angle of the cone, 

The shock location is given by $a = $a(Ra). At a point (Ra, $ a )  immediately behind 
the curved shock, which locally makes an angle /3 with the free stream, the flow must 
sa,tisfy the oblique shock relations, i.e. 

$a)  = 0, (27 1 
(28 1 u(Ra, $ a )  cos ($a -v(Ra, $ a )  sin ($a -PI  =  nil, COSP, 

and 

In addition the following equation holds a t  the shock and may be used to  find p: 

tan -P )  + Rad$,/dRa = 0. (31) 
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The equations were solved by expanding the dependent variables as a power series 
in R :  for any variable $, 

W , 4 )  = $ o ( ~ ) + R $ l ( ~ ) + g R 2 ~ 2 ( 4 , +  - - * ,  (32) 

where the function $i($) can be recognized as the ith derivative with respect to R 
in the limit R -+ 0. The shock location is given by the power series 

4a(Ra) = 9 a o + R a 4 a l + ~ R ~ ~ a , + . . . ,  (33) 

where r$ao, 4a2, . . . are constants. q5ao = Po, the shock angle a t  the tip, and the local 
shock angle can also be expressed as a power series in R, with constant coefficients: 

The equations governing the zeroth-order terms in the expansions defined by (33) 
were obtained by setting R = 0 in (21)-(24): 

and 

where 
a; = (y  - 1) (c* + iyM2, - a. - iu; - &$). (39) 

The shock boundary conditions for these zeroth-order equations are given by setting 
R, = 0 in (27)-(31): 

a o ( P 0 )  = 0, UOCPO) = y*M, COS P o ,  (401, (41) 

and 

since 4,(0) = Po. The boundary condition on the body is simplyvo(8,) = 0. As expected, 
the flow a t  the tip is frozen. Equations (36) and (37) are the well-known Taylor- 
Maccoll equations written in our notation. Numerical integration of these equations 
from the shock to the body was effected by use of the Runge-Kutta-Merson routine 
given in the Nottingham Algorithms Group Library Manual (1971). The angle Po - 8, 
was divided into 50 equal segments and within each segment the library routine was 
applied with the size of the first step equal to of the segment. The routine varies 
the step size automatically to keep the local truncation error below 10-12. The inte- 
gration was terminated when either vo = 0 or 4 = 0,. At the outset the value of Po 
corresponding to M, and Ob was unknown and to determine the appropriate value 
the integration was repeated with improved estimates of Po until lvO(0b)l < 10-l2. 

Pictorial representation of the zeroth-order results is superfluous here but they 
were a necessary requirement for the solution of the higher-order equations, wherein 
zeroth-order variables appear as coefficients. 
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The equations governing first-order terms in the expansions defined by (32) were 
obtained by letting R-t  0 in the first partial derivatives with respect to R of (21)-(24). 
They are 

dg1 ; uog1 - Pore 
(44) 

d# vo 90 ' 

and 

The shock boundary conditions for these equations are given by differentiating (27)- 
(31) with respect to R, and letting Ra+O along the shock: 

Ul(P0) = 0, (48) 

(49) ~ l ( P 0 )  = -#a1 [2y'MmsinPO + (duo/d#)+p, +vO(Po)I, 

In  (44)-(52) all functions with suffix 0 are known from the zeroth-order solution. 
Initially #al is unknown and to obtain its value we require that solution which satisfies 
the body boundary condition v,(B,) = 0. 

Since boundary condition (48) is independent of #,1,  (44) can be solved separately 
and the solution is 
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FIGURE 2. Gradients at  the tip of the cone for y = 5, evlb = 1, M ,  = 2 and 8, = 10". 
9 = loo, (rl = 4.059 x u1 = 1.755 x 

At 

where the constant of integration C is obtained using (48). Equations (45)-(47) are 
ordinary linear inhomogeneous differential equations in ul, v1 and pl. One can, there- 
fore, choose to  write the solutions as 

$I($) = $al$P' ($)  + $iCl'"'($)t (54) 

where the $in) are the solutions of (45)-(47) under boundary conditions (49)-(51) 
with $al = 0 and the @fl) are the solutions of the homogeneous equations obtained by 
equating the left-hand sides of (45)-(47) to  zero under the same boundary conditions 
but this time with $al = 1 .  

The numerical integration of both homogeneous and inhomogenous equations was 
carried out in the same way as for the zeroth-order solution. When the body was 
reached the boundary condition allowed the determination of the scaling factor 

$al = - v i " ' ( o b ) / v i " ' ( o b ) .  (55)  

The appearance of vo in the denominators of terms in the first-order equations indi- 
cates that  the solutions may be singular on the body. To identify the nature of the 
singularity we proceed with analysis similar to  that of Cabannes & Stael (1 961). 

I n  the neighbourhood of the body 

%(#) = % ( O b )  f - 8 b ) 2  ( 5 6 )  

wO(#) = - 2uO(6b) (4 - ' b )  + O($ - O b l 2 .  (57) 

gl($) = rO(8b)/uO(ob) - c l ( $ - o b ) g  + *..? ( 5 8 )  

and 

Substituting into (53) we obtain 

where c1 is a constant. Clearly derivatives of c1 with respect to $ are singular on the 
body. Sedney & Gerber ( 1 9 ~ 7 )  showed that the gradient functions in their co-ordinates 
possessed singularities of the same nature and for purposes of numerical integration 
they systematically reduced the step size near the body. 
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Equation (58) suggests that a Taylor series can be constructed for the gradient 
functions in the neighbourhood of the body using the transformation 

q5 - 8, = *sz. (59) 

Since the Rubge-Kutta-Merson method is derived from the Taylor series, recasting 
(45)-(47) with S as the independent variable should lead to a more accurate solution. 
First-order solutions in the q5 and the S co-ordinate agreed to four significant figures. 

Results of the calculation of the first-order solution are illustrated in figure 2. The 
singular nature of the derivative of g1 a t  the cone surface is evident. The turning 
points in u1 and v1 were carefully investigated and are genuine properties of these 
functions. 

Second-order equations were also obtained and solved using the same numerical 
approach with the appearance of no further singularities. We shall not discuss these 
equations here as only the first derivatives were used to start the characteristics net- 
work. However, some aspects of the second-order solution will be discussed briefly in 
comparison with the characteristics results. 

4. The characteristics network 
Outside the tip region the flow was calculated using the method of characteristics 

in cylindrical polar co-ordinates. The z axis was coincident with the axis of the cone 
with origin at the tip. The non-dimensionalized equations, in characteristic form, are 

dr/dz = tan (B+y), (60) 

sin y sin 8 
rsin(O+y) 

dr= - dr dP (Y- l ) P @ @ - - d  
Pq2 tan P + d8 + q 3  sin y sin (8 + y) 

on the left-hand characteristics, 
drldz = tan (8 -y), 

sin y sin 0 
rsin(8-p) 

dr = - dr dP (7- 1 ) P W - 4  
+ 4 3  sin y sin (0 - y ) pq2 tany - 

on the right-hand characteristics and 

p@(F - fT) 
dz 

dr 
- = tan8, dp = -pqdq, dr  = 
dz  q cos 8 

on the streamlines. Here y is the frozen Mach angle and 0 the flow direction relative 
to the z axis. Equations (12)-(15) make up the required set. These equations are 
identical to those used by Hornby & Johannesen (1975) with the addition of the axi- 
symmetric term on the right-hand sides of the compatibility equations. The boundary 
conditions are that 0 = Ob on the body and that the oblique frozen shock relations 
must hold a t  the shock. 

A network based on left-hand characteristics (CL) and streamlines (SL) and using 
interpolation along right-hand Characteristics (CR) was chosen and is illustrated in 
figure 3. Within each network element the usual methods of iteration were employed 
for higher accuracy. The choice of network was based upon physical considerations. 
The two main effects in the flow are the propagation of disturbances from the body 
along CL’s and the relaxation along SL’s, whereas the CR’s convey the much weaker 
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FIGURE 3. The characteristic network showing the starting procedure. 

influence of the frozen shock on the flow nearer the body. With this network it was 
clear that the characteristics calculations should be started from a CL determined 
from the tip expansion solution described in $ 3 .  The projection of the co-ordinate 
expansion solution onto a CL was incorporated as part of the numerical integration 
of the first-order terms, and all the flow variables were calculated at  selected points 
along this first characteristic. These data points were chosen by consideration of the 
errors in the subsequent characteristics calculations and distributed such that equal 
changes in log r took place between adjacent points on the first CL. This distribution 
makes uniform the errors in the axisymmetric term of the compatibility relations. 
The reliability of the projection was tested by substituting the data into the compati- 
bility equation. With the first CL intersecting the shock at  R, = 1 and using steps of 
A(1ogr) = 0.1, the compatibility equation was satisfied to within one part in lo4. 
Changes in R, and in A(log r )  led to systematic variations in the accuracy, which was 
also assessed using the second-order solution of the co-ordinate expansion. In  the 
majority of flows calculated we used the numerical values of R, and A(1ogr) given 
above. This procedure created about 30 data points on the first characteristic. The 
streamlines through these points were used to build up the network in layers, each 
layer beginning at  the body and ending a t  the frozen shock. Step sizes along the body 
were also chosen such that logr changed by the same amount between steps. This 
leads to larger step sizes downstream. 
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R 

FIGURE 4. Contours of constant 10% (solid curves) and 102a (dashed curves). The shaded area 
at small values of R denotes the region where the tip expansion we8 used. At the tip on the 
body CT = 0.0761. y = I, cYib = 1, M, = 2 and 0, = 10". 

- 

This particular way of increasing the step size along the body has essentially the 
same effect as the choice of a step size based on equal changes in a thermodynamic 
variable along the body. The latter method was used by both Hornby &, Johannesen 
(1975) and Dain & Hodgson (1975). Both methods create small meshes where the 
flow gradients are large and both methods permit the calculation to proceed deep 
into the flow while making efficient use of computer storage capacity. However, the 
step size must not be allowed to increase indefinitely since this would lead to too 
much information being lost in the far field. For this reason the step size was increased 
no further after the frozen shock strength had decreased 90% of the way towards its 
ultimate value a t  infinity. In  the case of a fully dispersed wave a t  infinity the frozen 
shock decays to zero strength. In  the network this manifested itself by an overshoot 
to negative shock strength and, after interpolating to zero strength, the shock was 
replaced by a free-stream characteristic. The overshoot was in all cases less than 
0.05% of the shock strength a t  the tip and replacement of the shock by a free-stream 
characteristic was no less accurate than any single network calculation. 

The continuity equation was integrated along each CL and found to be satisfied to 
better than 1 yo. A further important check is possible since the exact flow at infinity 
is known a priori. The developing wave structure can at  all stages be compared with 
that of the wave a t  infinity. 

The streamlines converge towards the body as z increases. At large distances along 
the body the stream tubes become very narrow and the entropy gradients become 
correspondingly large. Though difficulties might be expected in calculating this part 
of the flow, none were found in spite of it being necessary, owing to stream-tube con- 
vergence, to interpolate along a CR crossing up to thirty streamlines. Difficulties 
would almost certainly have arisen if a different dependent variable, entropy for 
instance, had been used in preference to pressure, which is relatively unaffected by 
entropy in this part of the flow. 

F L M  85 
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FIGURE 5. Sectional views of the T and u surfaces indicated in figure 4 at  fixed values of R. 
(a) R = 0 and R = OC), ( 6 )  R = 10 and (c) R = 60. 

5. Detailed results for a particular flow 
First, calculations were made for a gas having cVib = 1 flowing past a cone with 

6, = 10" a t  2M, = 2. These conditions lead to a wave at  infinity with a strength of 
about 85% of the maximum strength for a fully dispersed wave in a gas with cvib = 1.  
For the same M, and cVib a cone angle of 10.4" would produce a maximum-strength 
fully dispersed wave at  infinity. Left-hand characteristics were added to the network 
until R 1: 600 along the frozen shock. By this stage the main features of the flow were 
included and what follows is a description of particularly interesting aspects of the 
results. 

Conditions near the tip are indicated in figure 4, where contouzs of u and 'ii' are 
plotted in polar co-ordinates on rectangular axes. Such a plot stretches the tip singu- 
larity into a line. The u and 5 contours meet asymptotically as R+m, where condi- 
tions depend only on q5 and are described by the Taylor-Maccoll equations for the gas 
in equilibrium. Both 5 and r, the local departure from equilibrium, have maxima at  
the tip on the body. 

Sectional views of the contours in figure 4 are shown in figure 5. The extreme cases 
R = 0 and R = 00 are shown in figure 5 (a) ,  where both flows are obtained from ideal- 
gas calculations using frozen-gas properties a t  R = 0 and equilibrium-gas properties 
at R = 00. The non-equilibrium structure of the fully dispersed wave at infinity can 
be calculated from the equilibrium wave strength, but even so it would appear as a 
discontinuity in the figure. Figures 5 ( b )  and ( c )  show sectional views at  R = I 0  and 
R = 60 respectively. The frozen shock decay and the decreasing value of g5 at the wave 
front are typical of the whole flow in demonstrating the smooth transition of the frozen 
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FIGURE 6. Temperature profiles of the developing wave along selected streamlines denoted by 
z,, the co-ordinate a t  which the streamline intersects the frozen shock. The circles denote the 
profile of the wave a t  infinity. 

flow a t  the tip into the equilibrium flow at infinity. Notice that equilibrium is reached 
very much more quickly near the body than near the wave, within which non- 
equilibrium effects persist to infinity. 

The greatest departure from equilibrium occurs a t  the tip on the body. The rate 
of approach towards equilibrium is thus greater on the body streamline than on any 
other. The characteristics calculations indicated that along the body streamline 
equilibrium was approached exponentially with dist,ance downstream from the tip. 
A more detailed investigation of the tip expansion, including second-order terms, 
showed that for this particular flow 

where the suffixes on I' denote the order of different'iation with respect to R in the 
limit R --f 0, defined according to (32). The proximity of the above numerical value to 
unity indicates that I' exhibits almost exponential behaviour. Indeed, negligible 
differences occurred between the equation 

r(R, O b )  = I ' O ( O b )  exp { R r l ( o b ) / r O ( o b ) }  (68) 

and the full characteristics solution over more than three orders of magnitude of 
variat'ion in r(R, O b ) .  

Of greater interest is the gradual evolution of the developing wave towards its 
final 'one-dimensional' wave structure. This is illustrated in figure 6, where the tem- 
perature along streamlines has been plotted against z - z,, where z, is the z co-ordinate 

18-2 
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FIGURE 7. Local departure from equilibrium plotted against temperature 
along selected left-hand characteristics. 

a t  which the streamline intersects the frozen shock. Also shown is the temperature 
profile of the one-dimensional wave a t  infinity. The actual location of the wave a t  
infinity is not known a priori and in figure 6 the profile was matched by comparison 
with the front of the wave on the furthest calculated streamline. The influence of the 
non-uniform equilibrium core flow on the tail of the developing wave decreases as 
z, increases. The influence is still in evidence for z, = 432.5, but since the accumulated 
error in calculations to this stage is about 50% no real purpose would be served by 
computing much further. The trend is already clear. Figure 7 shows an altsrnative 
way of describing the thermodynamics of the entire flow. The local departure from 
equilibrium is plotted against temperature for selected left-hand characteristics. The 
gradual developments of the flow a t  the body, in the core and in the wave are evident 
even though they occur over quite different scales. Since the method of calculating 
the flow depends upon determining conditions on successive CL's, it  is clear that the 
most inaccessible part of the flow is at  the downstream side of the developing wave, 
near Xin figure 7, where the flow a t  infinity is slowest to evolve. Note that the maximum 
value of I' in the flow at infinity is an order of magnitude smaller than the maximum 
value a t  the tip. 

There are two essentially different features of the development of the wave: the 
frozen shock and the relaxation region, which will be considered separately. 

The decay of the frozen shock is represented in figure 8 by plotting 

log ((Fa - r a m ) / ( l - ' a m  - r a w ) )  

against r .  Here Pa is the departure from equilibrium behind the shock, Fa,, its value 
a t  the cone tip and ram its value at  infinity. For fully dispersed waves (as in this 
particular example) ram = 0. 

For r < 3 the tip expansion a,dequately describes the decay (though it was used 
only for r < 0-5 ) ,  but thereafter the local logarithmic decay rate decreases, reaching 
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FIGURE 8. Frozen shock decay as a function of distance from the cone axia. The dashed line 
corresponds to the two-dimensional acoustic decay rate. Results are shown for two different 
step sizes: A, A(1ogr) = 0.05; 0, A(1ogr) = 0.1. 

a nearly constant value in the range 20 < r < 100. Following Hornby & Johannesen 
(1975), we shall approximate this part of the curve with the tangent a t  the point of 
greatest negative slope, described by the equation 

(Pa - ~am)/ ( rao - r a m )  = A exp ( - (69) 

where A and r, are empirical const.ants for each flow. Finally, the local logarithmic 
decay rate increases again. Only when r > 100 is there a significant difference between 
the results of calculations using two different step sizes determined by A(1ogr) = 0.1 
and 0.05. The difference is, of course, exaggerated by the logarithmic scale, since by 
this stage the strength of the shock is only a few per cent of its value a t  the tip. The 
smaller-step calculations are certainly more accurate but were too demanding on 
computer storage to be used for all subsequent flows. The ultimate logarithmic decay 
rate (in bhis case for r > 130) may be determined analytically using the following 
argument. 

Since in steady axisymmetric flows of inviscid gases a stream surface may be re- 
placed by a solid body of revolution, the same outer flow may be generated by a whole 
family of open-nosed bodies of revolution defined by stream surfaces nearer to the 
axis. Applying this well-known principle to the flow in the neighbourhood of the 
frozen shock when it becomes very weak leads to the conclusion that the ultimate 
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FIGURE 9. Development of the wave, reprosented by the maximum departure from equilibrium, 
towards its ultimate one-dimensional structure. A, A(1og T )  = 0.05; 0, A(1og T )  = 0.1. 

decay of the frozen shock is determined by the flow past a thin wedge. Hornby 8: 
Johannesen (1975) give the decay law of such a shock: 

where 

y is the co-ordinate distance measured normal to the free-stream direction and yd is 
the two-dimensional frozen acoustic decay distance. With y replaced by r,  this frozen 
acoustic decay law is indicated by the dashed line in figure 8, where it is seen to describe 
the ultimate frozen shock decay. Only the slope of the dashed line and not the precise 
location is known a priori. 

Also shown in figure 8 is the curve 

r, = WaO(Yaz/r)+ erf(r/y,)+ exp ( - T / Y d L  (72) 

which is the slender-cone frozen shock decay law given by Chou & Chu (1971) and 
Clarke & Sinai (1977). As r+co the local logarithmic decay rates given by (70) and 
(72) coincide. The pre-exponential factors in (72) would modify the slope of the dashed 
line in figure 8 by only a few per cent. We shall find in the next section that our results 
are in agreement with (72) when Ob-+ 0. Figure 8 demonstrates that the local logarith- 
mic decay rate may be considerably slower than that given by (72) during the middle 



Xupersonic flow of a relaxing gas past a cone 535 

1 

lo-' 

P 
I 

1 0 - 3  _ _  
10-1 1 

r 
10 

FIGURE 10. Entropy contoiirs (solid curves) and streamlines (dashed curves) 
converging towards the cone surface. At the cone tip 8 = 6.73 x 

part of its decay. The frozen acoustic decay law applies only when the shock strength 
has become about 1% of its tip value. 

The development of the relaxation region into its ultimate form was given in figure 6. 
To describe the gross features of the wave we use a similar approach to that of Hornby 
& Johannesen (1975) and plot log{(I'max- I'maxm)/(I'maxO- rmaX,)} against r ,  as in 
figure 9. Here rmax is the maximum departure from equilibrium on a streamline, 
rmaxo its value on the body streamline and rmax, its value at infinity. The large 
gradient in this quantity at  small distances occurs because the locus of r m a x  lies 
close to the cone surface near the tip. In  this region changes in I'max are more closely 
related to the formation of the equilibrium core than to the developing wave. For 
r 2 10, r m a x  depends essentially on the wave structure, while for r 2 50, rmax is 
described by the empirical equation 

( r m a x -  rmaxm) / ( rmaxO - rmax, )  = Bexp ( - r / rg ) ,  (73) 

where B and rg are obtained by fitting the equation to the point of maximum negative 
slope in figure 9. For consistency in comparing different flows, calculations with a 
step size defined by A(log r )  = 0.1 were used. The results for A(log r )  = 0.05 lead to 
slightly different (better) values for the empirical constants but they are more than 
four times as expensive. 
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Entropy is produced in the flow by the frozen shock and by relaxation. Vincenti & 
Kruger (1965) show how the entropy increase due to relaxation may be obtained. 
Assuming the vibrational mode to be in internal equilibrium a t  temperature 

Tvib = + v/Cvib, 

the entropy increase due to relaxation along a streamline is 

ds = ( l / T v f b  - 1/T) dc. (74) 

This equation can then be integrated along any streamline starting in the free stream. 
Using assumptions outlined in 3 2: 

8 = (Y - l)-'IOgT-lOgP+Cv,blOg(1 +c/Cvib). (75) 

It is interesting to plot contours of constant entropy in the logarithmically distorted 
co-ordinates shown in figure 10, where rb is the co-ordinate of the cone surface and r 
is the contour co-ordinate at the same value of z. Also shown are the shock location 
and streamlines which coincide with the entropy contours far downstream. Clearly 
streamlines and entropy contours approach the cone surface as r-l and maximum 
entropy occurs a t  the body. These results provide additional evidence that the cal- 
culations are behaving correctly even in regions of the flow where certain thermo- 
dynamic gradients become very large. In  the corresponding wedge flow the entropy 
layer does not ,shrink towards the body. 

6. Comparison of the wave development of several flows 
The results described in $$3-5 were obtained for a selection of gases having 

cVib = 1.0, 2.0 or 3.0 flowing with M, = 2.0 or 3.0 past cones with semi-apex angles 
Ob in the range 5"-15'. Since the main objective was to determine the progress of the 
wave the two families of curves including those shown in figures 8 and 9 were investi- 
gated in greater detail. The flow parameters r,, A ,  rg and B were determined for each 
flow. These parameters describe the gross features of the developing wave in the far 
field. We recognize, of course, that in the case of a fully dispersed wave at infinity the 
frozen shock ultimately decays according to the frozen acoustic decay law. By this 
stage the strength of the frozen shock is only a few per cent of its value at the tip. 
Bearing in mind the outcome of the investigations of Hornby & Johannesen (1975), a 
similarity representation of the above four parameters was sought. They found that 
the most important aspect of any one wedge flow defined by M,, Cvib and the wedge 
angle 8, was the strength of the wave at  infinity in relation to the maximum strength 
of a fully dispersed wave for the same values of M, and Cvib. The maximum-strength 
fully dispersed wave was created by a wedge angle O$. This led to plotting their 
quantities equivalent to r,, A ,  rB and B against B,/O:. Plots of A and B collapsed onto 
single curves and when the shock decay and wave development distances were nor- 
malized by the frozen acoustic decay distance yal [equation (71)I they too collapsed 
onto single curves. 

For given values of M, and cVib the maximum strength and inclination of a fully 
dispersed wave at infinity can be found from the two-dimensional plane shock wave 
relations. The cone angle 8: required to produce such a shock at  infinity can then be 
found by integrating the equilibrium Taylor-Maccoll equations from the shock to the 
body. 
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The normalization factor for the shock decay and wave development distances is 
not so readily obtained. We have shown in the previous section that when the frozen 
shock becomes very weak it decays according to two-dimensional linearized theory 
and in a preliminary assessment of the results a plot of ra/yal vs. Bb/8$ led to a collapse 
of all points onto a single curve. However, as 8 b / @  + 0 the values of ra/yal approached 
a value somewhat less than unity, indicating that yal was not the limiting value of 
ra as 8 b  + 0. In  a further attempt to determine the limiting value of ra we looked at  
the first-order tip expansion and calculated numerically 

- r;; = lim - log ( ra/rao) 
7'0 (" dr 176) 

for successively smaller values of 8, and constant C,ib and M,. Suffixes 0 and 1 refer 
to the order of differentiation with respect to R at the tip of the cone. It was clear that 

and the limit was independent of c,jb and M,. 
Subsequently it was found that differentiation of (72) yields the same result, i.e. 

4 1 I 3Yal Pal 
(ra/ra0) = - - = -- . 

Henceforth ral was used to normalize ra and rp. The resulting plots are shown in figures 
11 (a)-(d). 

The first three plots indicate the same type of similarity as was found by Hornby & 
Johannesen (1975) but figure 11 ( d )  proves the exception and this apparent discrepancy 
merits our first consideration. 

In  the case of wedge flows the locus of l7 max coincides with the frozen shock near 
the tip. In  cone flows the locus is behind the frozen shock and directed much closer 
to the body surface. Figure 4 shows t'hat r m a x  has its greatest value at  the tip on the 
body. Consequently variations in P m a x  are controlled by the relaxation region behind 
the shock within the non-uniform flow created by the axisymmetry. Figure 9 shows 
that a fourfold decrease in rmax occurs in the very small range 0 < r < 2. Thus the 
intercept value B is determined by the near-field flow, for which there is no reason to 
expect the Same type of similarity. Since the locus of rmax is swept back close to the 
body it is not surprising that the values of B decrease as M, increases. In fact for the 
two values of M, used it appears that B is inversely proportional to M,. The precise 
dependence of B on Mach number could be obtained by a more detailed examination 
of the locus of rmax in the expansion about the tip, but the main point is that B 
depends on the near-field flow, being more closely related to the development of the 
equilibrium core than to the development of the wave. 

Figure 1 1  (a)  shows that the far-field frozen shock decay distance may be up to 
seven times greater than the linearized decay distance ral. In  the limit of small cone 
angle the frozen shock decay approaches that given by (72), which is plotted in 
figure 8, where C,ib = 1.0 and M, = 2.0. For partly dispersed waves a t  infinity the 
decay distance rapidly decreases as 8, increases. The physical reason for the very 
sharp peak in the 'critical' case On = 19: can be understood by considering the pro- 
perties of the wave at  infinity. The maximum-strength fully dispersed wave at 
infinity is parallel to the left-hand free-stream characteristics. The front of this wave 
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is a zero-strength frozen shock across which there is a discontinuity in the gradient of 
thermodynamic quantities and which is approached asymptotically from behind by 
left-hand characteristics. Thus the information carried by the characteristics from the 
cone must travel a very great distance to reach the wave front. Those points for which 
0, < rS,T lie very close to the fourth-power curve: 

rn/ra,-  f = (%/f334. (79) 
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FIGURE 11. Normalized plots of (a) the far-field frozen shock decay distance, (b )  the value of A 
defined by (69), (c) the far-field wave development distance and (d) the value of B defmed by 
(73). 0, M ,  = 2, cVib = 1 ;  A, M, = 2, cVib = 3;  x ,  31, = 3, cVib = 1. Also shown in (c )  is 
the t,wo-dimensional result, equation (82). 
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The results of Hornby & Johannesen (1975), for Ow < 8& lie very close to the square 
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where ya is defined for plane flow in precisely the same way as r, is defined for the 
cone flow. I 

For larger values of 8,/8,* the values of ra/ral decrease and appriach the values of 
rg/ral plotted in figure 11 (c). This coincidence is to be expectedsirlce for strong partly 
dispersed waves rmax occurs immediately behind the frozen shock and so for large 
8,/8,*, ra and rg measure the same effect. The values of rg and B are in practice more 
inaccessible than those of r, since the locus of rmax lies deep in the characteristic net- 
work behind the frozen shock. Consequently we do not have as many results. However, 
the trend of the points in figure 11 (c) is clear and a least-squares fit to the available 
points is 

rp/raE = 5.7(0,/8,*)-4.3. 

Thus weaker fully dispersed waves require a much greater distance in which to develop 
their one-dimensional steady structure. For direct comparison the result for the wedge 
calculations is also shown: 

where yg is the plane flow parameter corresponding to rg. 
In  figure 11 ( b )  it is shown that the intercept value A has peculiar behaviour corres- 

ponding to that of r, for 8, in the neighbourhood of 8;. For 8, -+ 0, A -+ 1 and r, --f ral, 
and the frozen shock decay is described by (72). Since (72) describes also the shock 
decay in the very far field, where the frozen shock behaves as if it were very weak and 
two-dimensional, it appears that this equation describes the entire frozen shock decay 
in the limit 8, -+ 0. This result agrees with the work of previous aithors, for example 
Chou & Chu (1971) and Clarke & Sinai (1977). 

Having shown that B is not directly a property of the wave development in the far 
field we conclude that the same type of similarity occurs for the cone as was shown to 
occur for the wedge. Figure 11 can be used to determine the gross aspects of wave 
development of cone flows of arbitrary Mach number in gases with arbitrary values 
of the vibrational specific heat. 

yg/yd = 2-0(8&?$)-1.6, ( 8 2 )  

7. Discussion and conclusion 
It has been shown that the supersonic flow near the tip of a cone in a relaxing gas 

may be calculated by using a co-ordinate expansion procedure in polar co-ordinates 
and numerically integrating the equations of each order in the expansion. The tip 
flow was mapped onto a left-hand characteristic and the far field was calculated using 
the method of characteristics, which cannot be directly applied at  the tip. Both parts 
of the calculation rely heavily on the use of a large computer to integrate equations 
which cannot at  present be solved by analytical means. 

The evolution of the frozen flow at the tip into an equilibrium flow, bounded by a 
‘one-dimensional’ shock wave with relaxation, was traced. The main part of the 
development of the wave was then found to be described by empirical similarity laws. 
The similarity laws allow the determination of the gross features of t,he development 
of waves of arbitrary strength in gases with arbitrary vibrational specific heat. The 
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results, in particular (81), can be used to determine the development distances of 
waves in atmospheric air, where the dispersion may be due to the small contribution 
of the vibrational specific heats of oxygen and/or nitrogen. In  this case the maximum- 
strength fully dispersed waves are in the noise intensity range currently causing most 
concern. In a completely different vibrational specific heat range the results could 
be used to calculate the structure of shock waves in the hot combustion products of 
a jet-engine exhaust. Though the cone is a wave source of infinite extent the methods 
described may be extended to deal with a finite body of revolution, for which the 
present paper may be regarded as a preliminary exercise. 

Using the wedge results Hodgson & Johannesen (1976) estimated the development 
distances for waves in the atmosphere. The precise values are particularly sensitive 
to humidity variations but they depend also on ambient temperature and pressure 
and on wave strength. For wave strengths in the range 1-100 Pa development dis- 
tances are likely to be between 0.1 and 100 km. Thus for a developing wave in the 
atmosphere it cannot be automatically assumed that conditions are uniform ahead 
of the wave. Figure 11 ( c )  shows that for the cone even greater development distances 
are required than for the wedge. 

In  the light of these results the application of asymptotic theories to describe long- 
distance sonic-bang or sound propagation in the atmosphere must be critically re- 
appraised. Vibrational relaxation and compressive steepening are certainly important 
features in all large amplitude disturbances but it is not obvious that the scale of the 
atmosphere permits the waves created to become fully developed. 

Undoubtedly the weakness of loud noise waves and the smallness of the vibrational 
specific heats of atmospheric oxygen and nitrogen invite the use of approximate 
methods, such as those of Clarke & Sinai (1977). The characteristics method, with 
equations cast as in 0 3, is not likely to be the best under such circumstances. However, 
the similarity laws obtained indicate that the main features of wave development 
depend on the ratio of the cone angle to the ‘critical’ cone angle which creates a 
maximum-strength fully dispersed wave at infinity. The critical cone angle depends 
on the free-stream gas properties. Though the calculations were made for c,,,, values 
considerably larger than for atmospheric oxygen or nitrogen the strengths of the 
waves investigated were also larger than, say, typical sonic-bang shocks, by a com- 
parable factor. Thus extrapolation to the much weaker disturbances of loud noise in 
the atmosphere is valid. 

Clarke & Sinai (1977) make no use of the exact wave solution at  infinity, which for 
the cone is of finite strength. Their ‘small-energy ’ approximation indicates the same 
type of similarity as has been found here, but in general their results also require 
numerical integration and considerably more work is required before we can make a 
direct comparison. In  other cases their far-field flow is described by an axisymmetric 
form of Burgers’ equation which is unlikely to describe accurately the wave at  in- 
finity unless it is very weak compared with the maximum-strength fully dispersed 
wave. The method is, however, applicable to bodies of finite size since Burgers’ 
equation accurately describes the asymptotic flow at large distances. That the asymp- 
totic solution is possible in the earth’s atmosphere is again questionable. 

The results of the characteristics calculations may be readily interpreted to obtain 
the gross features of shock wave development in the flow of any single-mode vibra- 
tionally relaxing gas past a cone. 
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